Dual Effects of Bilirubin on the Proliferation of Rat Renal NRK52E Cells and ITS Association with Gap Junctions.

نویسندگان

  • Yanling Wang
  • Qiongfang Zhu
  • Chenfang Luo
  • Ailan Zhang
  • Ziqing Hei
  • Guangjie Su
  • Zhengyuan Xia
  • Michael G Irwin
چکیده

OBJECTIVE The effect of bilirubin on renal pathophysiology is controversial. This study aimed to observe the effects of bilirubin on the proliferation of normal rat renal tubular epithelial cell line (NRK52E) and its potential interplay with gap junction function. METHODS Cultured NRK52E cells, seeded respectively at high- or low- densities, were treated with varying concentrations of bilirubin for 24 hours. Cell injury was assessed by measuring cell viability and proliferation, and gap junction function was assessed by Parachute dye-coupling assay. Connexin 43 protein was assessed by Western blotting. RESULTS At doses from 17.1 to 513μmol/L, bilirubin dose-dependently enhanced cell viability and colony-formation rates when cells were seeded at either high- or low- densities (all p<0.05 vs. solvent group) accompanied with enhanced intercellular fluorescence transmission and increased Cx43 protein expression in high-density cells. However, the above effects of BR were gradually reversed when its concentration increased from 684 to 1026μmol/L. In high-density cells, gap junction inhibitor 12-O-tetradecanoylphorbol 13-acetate attenuated bilirubin-induced enhancement of colony-formation and fluorescence transmission. However, in the presence of high concentration bilirubin (1026μmol/L), activation of gap junction with retinoid acid decreased colony-formation rates. CONCLUSION Bilirubin can confer biphasic effects on renal NRK52E cell proliferation potentially by differentially affecting gap junction functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of vario...

متن کامل

Upregulation of Connexins 30 and 32 Gap Junctions in Rat Hippocampus at Transcription Level by Chronic Central Injection of Lipopolysaccharide

Background: Gap junctions composed of connexins (Cx) are functional in cell defense by propagation of toxic/death molecules to neighboring cells. Hippocampus, one of the brain regions with particular vulnerability to damage, has a wide network of gap junctions. Functional response of astrocytic Cx30 and neuronal Cx32 to hippocampal damage is unknown. Methods: We infused lipopolysaccharide (LPS)...

متن کامل

Gap junctions of the hippocampal CA1 area are crucial for memory consolidation

Introduction: Gap junctions are specialized cell–cell contacts between eukaryotic cells through which they communicate. This type of communication has the potential to modulate memory process. We evaluated the effects of the gating of the hippocampal CA1 area gap junction channels on memory consolidation, using passive avoidance task. Materials and Methods: 72 adult male Wistar rats were distri...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Effect of Chronic Intracerebroventricluar Administration of Lipopolysaccharide on Connexin43 Protein Expression in Rat Hippocampus

Background: Hippocampal damages, which are accompanied by inflammation, are among the main causes of epilepsy acquisition. We previously reported that chronic intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS) modulates epileptogenesis in rats. There is a network of gap junction channels in the hippocampus that contribute to epileptogenesis. Gap junction channels are formed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dose-response : a publication of International Hormesis Society

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2013